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Theoretical and Experimental Studies of
Gain Compression of Millimeter-Wave
Self-Oscillating Mixers

FERNANDO R. PANTOJA anp EUTIQUIO T. CALAZANS, JR.

Abstract — A general theory for 2 heterodyne Gunn self-oscillating mixer
is developed to explain the experimentally observed phenomenon of “beat
output power compression,” i.e., an increase of down conversion gain with
a decrease of millimeter injected power. Adler’s general differential equa-
tion has been used, with some pertinent modifications and proper boundary
conditions. This differential equation has been modified to allow the
self-oscillating mixer to be frequency modulated. The solution of the new
equation has been obtained through a perturbational technique, where the
frequency of the self-oscillating mixer is assumed to be outside the locking
range of the injected signal. The theory has been based on the fact that,
owing to the bias perturbation of the (voltage tunable) self-oscillating
mixer, the oscillator is modulated, both in amplitude and in angle. The
functional dependence obtained depends, primarily, on the order of magni-
tude of the “induced” frequency of modulation. This semi-quantitative
theory agrees quite well with experiments performed with both InP and
GaAs Gunn diodes in the frequency range 75-100 GHz.

1. INTRODUCTION

NTEREST IN millimeter-wave self-oscillating mixers

(SOM) has been on the increase in recent years [1]-[5],
mainly because of the high burn-out power limit, rugged-
ness, low cost, and comparatively simple circuitry for sig-
nal processing. The self-oscillating mixer has the advantage
of large instantaneous bandwidth of operation [6] and the
fact that it does not need a separate local oscillator (LO)
and mixer diode. It acts simultaneously as a local oscillator
and a mixing element.

There are several potential applications, such as short-
range radars, secure communications, electronic seekers,
etc., especially for those applications where broad band-
widths are required. Moreover, millimeter waves are par-
ticularly advantageous if uses in smoke, dust, fog, or other
adverse environments are contemplated where infrared
would be absorbed and scattered. )

In the present article, results from detailed investigations
of heterodyne InP and GaAs SOM’s are reported. A semi-
quantitative theory for the experimentally observed phe-
nomenon of gain compression is also presented. This
phenomenon manifests itself through the increase of
down-conversion gain with a decrease of millimeter-wave
injected power [1], [7]. In other words, the behavior of
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power in the beat frequency is related to the millimeter-wave
received power, and it is shown that the conversion im-
proves with decreasing millimeter-wave received power.

The theoretical analysis is carried out using the basic
Adler’s equation [8] in which the pertinent assumptions
and boundary conditions are introduced. Such conditions
and assumptions are going to be discussed in due course. It
is important to note, however, that the theory here devel-
oped is to be regarded as a semi-quantitative theory con-
cerned with the general pattern of response of self-oscillat-
ing mixers.

The Gunn diodes used in the experiments were rated for
maximum output powers around 94 GHz, and the tests
were carried out in the frequency range 75-100 GHz. The
InP diodes were of two types: either a n*-n-n* sandwich,
or n-n* with a current-limiting cathode contact. The GaAs
diodes used were of the n*-n-n* sandwich structure. Some
of the experimental results presented for the types of Gunn
diodes were carried out at 94 GHz, thus providing means
of a comparative study.

II. THEORETICAL ANALYSIS

A. RF Voltage Across the Gunn Diode

Fig. 1 presents the experimental setup used and is the
basis of the subsequent theoretical analysis. In the presence
of an externally injected signal, which is sufficiently small
to avoid driven-oscillator instability spectra [9], the effect
of the beating millimeter-wave signals across the device can
be analyzed in terms of an amplitude-modulated voltage
signal together with a frequency-modulated voltage signal
owing to the bias perturbation of the (voltage tunable) Gunn
self-oscillating mixer (SOM).

Therefore, disregarding absolute phase differences (e.g.,
between the modulating signals), the actual RF voltage
across the Gunn diode can be written as

(1)

where A is the amplitude of the free-running SOM millime-
ter-wave signal, m is the amplitude modulation index, w,,
is the “induced” modulation frequency,! «, is the free-run-

. Aw .
v=A(1+ mcosw,t)sin| wyt + o Sine,t
m

lie., fundamental mixing frequency, defined by W,y — Wy, Where
©, is the angular frequency of the injected signal and w, is the
free-running SOM frequency.
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ning SOM frequency, and Aw/w,, is the “induced” mod-
ulation frequency index. After a somewhat laborious, but
not difficult, algebraic manipulation we can expand (1) in
terms of a combination of Bessel functions and trigono-
metric functions according to [10] and reach an expression
which gives the total RF voltage across the device in terms
of each frequency component individually, i.e.,
U—AJO(A )smwot—{— Y AJ(Aw)
wm =1’2,3’ . wm
mn
e g

A
+ > AJ, e AL sin (wpt — nw,,t)

+ AT ( Aw ) [1
n=12,4,6, - Wm
(2)

where the J,’s, k=0,1,2,---, n, are the first-kind Bessel
functions of order £ and argument Aw/w,,,.
The right-hand side term of (2) could be put together as

] sin(wyt + nw,,t)

L sin(wyt — new,,t)
Aw/w,, 0 "

b= Y (-1 AJ(A“’)
n=0,1.2, - ©m
mn | .
-[1—m]sm(w0t—nwmt)
Aw mn .
+n_122: AJ( )[1 Aw/wm]s1n(a>0t+no.>mt).

However, for future use, it is better to preserve (2) as it has
been presented previously.

Therefore, (2) represents the instantaneous RF voltage
across the Gunn device in terms of each frequency compo-
nent (provided that the relaxation frequency of the SOM is
much higher than w,,).

B. Derivation of the Intermediate Frequency Output Power

It has been accepted so far (e.g., [11], {12]) that the main
nonlinearity in the Gunn diode is its differential negative
resistance, and, of course, by the very nature of a nonlinear
element, a complete set of terms derived from the mixing
between the components (or any other higher order cross-
modulation product) are obviously going to be present at
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the device (SOM) terminals. However, the bias choke of
the SOM “prevents” high-frequency radiation leaking out
via the bias port and, therefore, only the lower frequency
components develop a substantial voltage drop across the
load (input impedance of the IF amplifier, in our case). By
“substantial” we mean a signal greater than the input noise
signal to the amplifier, regardless of the nature of the noise,
and a signal which lies within the overall bandwidth of the
IF system.

The time varying representation of the IF current is
given by [13]

i(1) = Xgw", (3)

where g, is the nth order conductance. Although a higher
order power series can describe more precisely the phe-
nomenon [14], it is sufficient to take the first three terms of
the power series given by (3) to achieve a good compromise
between simplicity and accuracy for small signal nonlinear-
ity. The first two terms (n = 0,1) only yield the average dc¢
term and high-frequency components (even for high values
of m). Therefore, it follows that for simple multiplication
for smallest signal nonlinearity, the first-order cross-mod-
ulation products from (2), which yield frequency compo-
nents at w,, are

n=0,1,2,---,m

i, ocAJO(A“’)E +AJO(A“’)W1 Y EE,.,
m n=1,2,3,-
+ Z W/;‘Zn+1+ Z I/I/n+IZn (4)
n=1,35, - n=2,4,6, -
where
E - ar 29|14 for n=1,2,3, - -
" "o, /] /e, S
Aw\[ mn
VV”—AJ"(;”,—)_Aw/wm_l_’ forn=1,3.5, ---
Aw [ mn
Zn—AJn(—m).l—m‘, forn=2,4,6, --- .
Rearranging (4) we have
Aw Aw m
. 2
i A JO( )Jl( )Aw/w
Aw Ao m(2n+1)
2 = Pl —_——— 7
24 =1,§3’...Jn(wm)']n+l(wm)[ A"‘)/""m :I (5)
Since )
Aw Aw
n=1§...fn(7m)’n+l(z;)

converges very quickly for small arguments Aw/w,,, and
for simplicity (without losing any essential feature of the
process) approximating the Bessel functions by the asymp-
totical expression for very small arguments [10]

(Aw) (3Aw/w,)”
J 2= AT Em)
"\ w, n!
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Equation (5) is simplified to

~Km+ sz( i"’ ) (6)

m
where K, and K, are constants.
Therefore, the power at the intermediate frequency
w,,, Pip is

P (iwm)2 ~ K,m?* + K4m2(%‘3) + Ksm (iw)

m m

(7
with the K,’s, n =3,4,5, being constants.

Under the small-signal injection analogy (e.g., [15]) we
shall now establish the functional dependence of the ampli-
tude modulation index m and the frequency modulation
index Aw/w,, with respect to the injected power Py

C. Amplitude Modulation Index

For modulation frequencies f,, >10 MHz, the finite time
constant of energy storage in the self-oscillating mixer
resonator leads to a phase delay of the amplitude modula-
tion, which in turn synthesizes the angle modulation. This
synthesis, being essentially a phase shift of the AM side-
bands, is adding energy to the carrier (cf., fundamental
angle modulation) which satisfies

I(E+2 ¥

n=1,2,---

J2(§) =1

in the Bessel function representation. In other words, the
amplitude modulation can be regarded as limited in favor
of angle modulation, so that at high-modulation frequen-
cies the effect of the phase delay actually enhances the FM
sensitivity [16]. Therefore, it is reasonable to assume that m
is a fairly insensitive function of the injected power. The
dependence of m with modulation frequency is nearly
constant for the modulation frequency range of our con-
cern and it will be neglected.

Hence, we can say that for high-modulation frequencies

m=M+8(Py,;)= M for P> ep (8)

inj
where M is a small constant, §(P,,) is a “zero order”
function of the injected power, and ¢, is a lower limit for
injected power such that (8) is still valid.

D. Frequency Modulation Index

Within a fairly wide range of high-modulation frequen-
cies f,,, the peak frequency deviation Aw can be regarded
as independent of f,,, but not independent of P,;. Actu-
ally, Aw is only a strong function of f,, as the modulation
frequency approaches the relaxation frequency of RF en-
ergy in the self-oscillating mixer, which normally lies around
1 GHz for J-band devices [17]. One would expect the
relaxation frequency to increase for higher frequency de-
vices, as has been already reported for Q-band devices [6].

Adler’s equation [8] can be extended such as to allow the
self-oscillating mixer to be frequency modulated by Aw by
the small injected signal. Under this assumption, we can
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re-write Adler’s equation as

do _ (@ +Awsine,?) 9)
¢t Qext Pout

where ¢ is the phase difference between injected and
outgoing signals, Aw, is the free-running frequencies dif-
ference, Q.,, is the external Q, and w, and P, are the
self-oscillating mixer free-running frequency and output
power, respectively.

The general form of the differential equation (9) is then
d¢

sing — Aw,

—Et—=—Asinqb-Bsin(wmt)sin¢—C (10)
with
f=2o Pig
Qext P
Py,
B Aw
Qext Po
C = Aw,

as compared with Adler’s general form differential equa-
tion

do .
7 Asing — C.
When in the latter we have
A
__w—o__ > 1
wo_ | P
QCXt

i.e., the injection frequency is outside the locking range, the
closed-form solution is given by [8]

A\? Ct A\?
1-(Z) "“[7\/1‘(5) }
(11)
which shows that ¢ undergoes a periodic variation and
does not converge to a constant value. However, for our

differential equation (10), the solution is not straightfor-
ward, but since

, an inj
ext ou ext out

Aw Py
Qext P out

we can apply a perturbational technique to solve it.
Therefore, if the solution to Adler’s equation is called
¢,(t), we shall try a solution of the form

¢T(t)=¢A(t)+¢p(t) (12)

to (10), where ¢,(?) is just a small perturbation to ¢,(¢). It
is necessary, however, that ¢,(¢) as well as d(¢,(7))/dt be
comparably smaller than ¢,(t) and d(¢,(1))/dt, respec-

(i-e., B< 4in (10))

<Aw, (i.e, B<Cin(10))
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tively, and that the boundary conditions of interest, i.e.,
not necessarily every boundary condition, must be verified

by ¢(2).
Substituting ¢,(¢) into (10) and using the fact that

cos (,(1)) =1
and
sin(,(1)) = ¢,(1)

yields

L0+ 2 (8,(1)

=~ A[sin(64(1))+,(1)cos (¢,(1))]
- Bsin(wmt)[sin(¢A(t))+¢p(t)cos(¢A(t))] -C.
(13)

Recalling the general form of Adler’s differential equation,
we can identify

£ (44(1)) = — Asin(8,(1))~C

and, therefore, (13) can be simplified to

2 (6,(0) = - cos(9,(0))-6,(0)

— Bsin(w,,?)sin(¢,(¢))
— Bsin(w,t)cos(¢,(1)) ¢,(2).

We assume the effect of the perturbation to be very small
indeed, such that

jcos (4(¢) ¢, (1) [~ 4= Bsin(a,(1))]]
< |- Bsin(w,t)sin (¢,(7))]

is a valid assumption.
Thus

L (4,(1)) =~ Bsin(w,0)sin(¢,(1).  (14)

Since 4 <« C, from the definitions following (10)
¢,(1)=—Ct +2km,

with —7/2 < Ct £2kw £ w/2 for the principal value.
Substituting the above expression for ¢,(¢) into (14), we
have

k = integer

%(q,p(t)) = — Bsin(w,,¢)sin{— Ct)

where
i2kw—%§2k—€t§i2kw+%.
As C = Aw, = w,, i.e., the beat frequency
. B .
$,(1) =~ 70 sin (w,,¢) cos(w,,1).

m

2 This ensures the validity of the solution, its “perturbational” nature,
and, of course, sets boundaries for validity to the obtained solution ¢(¢)
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Therefore, the general approximate solution to (9) is

2ot | Py
o) = - —w,tt2lka
T( ) [Qext Pout
Pln
—fg—]/ = sin(@,¢)cos(@,t) (15)
m ext out

where use has been made of the fact that 4 < C, and the
binomial expansion has been applied to the argument of
the tangent function appearing in ¢,(¢).

The right-hand term outside the brackets in (15) is the
phase difference due to the induced frequency modulation
of the self-oscillating mixer. It is worth noticing that the
mean phase difference (¢,(¢)) added to the total phase
difference is zero over one period of the induced frequency
of modulation. This is what one would expect, since the
nature of the modulation effect was considered to be
symmetrical about the “carrier” w,, and, consequently,
should have a zero mean value over one modulation cycle.

The frequency difference F(z) is the derivative of the
total phase difference ¢,(¢). Therefore

F(1) =2 (3:(1))

2w, inj Aw [ Py
=T/ — —Aw, — cos(2w,_t). (16
Qext Pout 0 2Qext Pout ( ” ) ( )

From the above expression, we can see that the second
right-hand term is a constant, independent of P,,. Since we
are secking a relationship between Aw and Py, this term is
of no consequence to us.

The (maximum) peak frequency deviation can be de-
fined from (16) as

Qe V Pout  2Qext V Pows
which can be re-arranged into a more suitable form, i.e.,
2w, Py
Aw 0y Qext V Pous
©rm 1— 1 P ing
20 ¥ Pou

where Aw/w,, is, then, the index of frequency modulation.
For a low level of injected power P,

1 Pin}
‘/ — <1
2Qext Pout

and we can apply the binomial expansion to the denomina-
tor of the expression for Aw/w,,, yielding
Aw

Wiy

2(/.)0 P ing Wy P 1)

werxt Pout W, ezxt out
For very small values of P, , ie., in the limiting case
P, — €, the first term of the above expression is the

(17)
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dominant term. Thus

. Aw
Im — > ———
Pan —e W,

20y P m}
@ Qext

which is exactly the functional behavior if no induced
modulation were present. On the other hand, as physically
expected, Aw/w,, — 0 as the injected signal power P, —0.
Another important feature depicted in the above expres-
sion is that Aw shows an approximately 1/Q.,, depen-
dence, which is very similar to the characteristic of a direct
bias voltage modulated Gunn diode for high f, [18].
Equation (17) seems to predict fairly well the behavior of
Aw of a self-oscillating mixer when the injected signal is
outside the locking region (as defined by Adler’s equation),
without losing the essential features of the two free-running
interacting oscillators. (A study when the injected signal is
in the locking region has already been carried out with
similarly good results [19], and will be reported later.)

Therefore, the dependence of the index of amplitude
modulation and frequency modulation with respect to Py,
are, respectively, given by (8) and (17), namely

m+M

1

+ 6P, °

inj ing

out P =€

Ao P2
m
where M, p, and 8§ are constants.
Substituting the above expressions into (7) and neglect—
ing the terms whose orders are higher than two in P,
yields the power at the intermediate frequency

P+ 0, +8,P10+ 8PS 4 5,p20

my?

(18)
where the 8,’s are constants and P is the injected power
P,,- The above equation is valid only for low-level signals
and provided that P >ep where, in practice, € P, 18
roughly of the order of the total baseband noise power

within the bandwidth considered.

I1I.

The setup shown in Fig. 1 was used for the experiments
with InP and GaAs SOM’s. A detailed analysis of the
experimental setup is given in [1].

No special adjustments were made to achieve the best
performance from the SOM’s, and therefore the data shown
represent typical results. Best overall noise figures obtained
so far are 11.5 dB for the InP (n*-n-n*) diodes as com-
pared with ~ 23 dB for the InP (n-n*) and GaAs diodes,
including the IF amplifier noise figure of 4.5 dB (70-MHz
IF, 33-MHz IF bandwidth). Fig. 2 shows a typical graph of
conversion versus millimeter-wave injected power. Conver-
sion is defined as

EXPERIMENTAL RESULTS

P
Conversion (dB) =101log P—IF

where P is the power at the intermediate frequency and
Py, is the injected millimeter-wave power. The theoretical
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curve was plotted using for P the expression given by
(18). It is possible to observe that there is no great dif-
ference in response (i.e., conversion) in the frequency range
75-100 GHz. The theoretical curve agrees quite well with
experimental data.

Fig. 3 shows the conversion versus injected power for the
three types of devices tested at 94 GHz, which provides a
comparative picture at the 94-GHz window. The theoreti-
cal curves are derived from (18). To the authors’ knowl-
edge, the data obtained are the best results reported in the
literature so far.

IV. CONCLUSIONS

A general theory for heterodyne self-oscillating mixers
was developed to explain the observed phenomenon of
“beat output power compression” (i.e., increase of conver-
sion with decrease of millimeter-wave injected power). This
was done using a modified Adler’s differential equation
with proper boundary conditions. The solution to the new
equation was obtained through a perturbational technique,
and, basically, all the boundary conditions rely on the fact
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that the injected signal is outside the locking range of the
self-oscillating mixer.

The theory agrees quite well with experimental data
acquired with InP (n-n*), InP (n*-n-n*), and GaAs SOM’s
working from 75 to 100 GHz. Some resuits have been
presented for the 94-GHz window specifically, thus provid-
ing a comparative picture of the three types of.devices
tested. Some of the results obtained can be considered the
state-of-the-art for self-oscillating mixers in the
millimeter-wave region.
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